DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product
نویسندگان
چکیده
DNA-dependent protein kinase (DNA-PK), which is involved in DNA double-stranded break repair and V(D)J recombination, comprises a DNA-targeting component called Ku and an approximately 460 kDa catalytic subunit, DNA-PKcs. Here, we describe the cloning of the DNA-PKcs cDNA and show that DNA-PKcs falls into the phosphatidylinositol (PI) 3-kinase family. Biochemical assays, however, indicate that DNA-PK phosphorylates proteins but has no detectable activity toward lipids. Strikingly, DNA-PKcs is most similar to PI kinase family members involved in cell cycle control, DNA repair, and DNA damage responses. These include the FKBP12-rapamycin-binding proteins Tor1p, Tor2p, and FRAP, S. pombe rad3, and the product of the ataxia telangiectasia gene, mutations in which lead to genomic instability and predisposition to cancer. The relationship of these proteins to DNA-PKcs provides important clues to their mechanisms of action.
منابع مشابه
Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM.
The human neurodegenerative and cancer predisposition condition ataxia-telangiectasia is characterized at the cellular level by radiosensitivity, chromosomal instability, and impaired induction of ionizing radiation-induced cell cycle checkpoint controls. Recent work has revealed that the gene defective in ataxia-telangiectasia, termed ATM, encodes an approximately 350-kDa polypeptide, ATM, tha...
متن کاملDNA structure-specific priming of ATR activation by DNA-PKcs
Three phosphatidylinositol-3-kinase-related protein kinases implement cellular responses to DNA damage. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated respond primarily to DNA double-strand breaks (DSBs). Ataxia-telangiectasia and RAD3-related (ATR) signals the accumulation of replication protein A (RPA)-covered single-stranded DNA (ssDNA), which is ...
متن کاملSynthetic lethality between mutation in Atm and DNA-PKcs during murine embryogenesis
The gene product mutated in ataxia telangiectasia, ATM, is a ubiquitously expressed 370 kDa protein kinase that is a key mediator of the cellular response to DNA damage [1]. ATM-deficient cells are radiosensitive and show impaired cell cycle arrest and increased chromosome breaks in response to ionizing radiation. ATM is a member of the phosphatidylinositol-3-kinase (PI3K)-related protein kinas...
متن کاملTHE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE
We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...
متن کاملAtaxia-telangiectasia and Rad3-related and DNA-dependent protein kinase cooperate in G2 checkpoint activation by the DNA strand-breaking nucleoside analogue 2¶-C-cyano- 2¶-deoxy-1-B-D-arabino-pentofuranosylcytosine
2¶-C-Cyano-2¶-deoxy-1-B-D-arabino-pentofuranosylcytosine (CNDAC), the prodrug (sapacitabine) of which is in clinical trials, has the novel mechanism of action of causing single-strand breaks after incorporating into DNA. Cells respond to this unique lesion by activating the G2 checkpoint, affected by the Chk1-Cdc25C-cyclindependent kinase 1/cyclin B pathway. This study aims at defining DNA dama...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 82 شماره
صفحات -
تاریخ انتشار 1995